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Abstract

This document rigorously develops the structure and properties of
the multi-layered Yang framework, denoted by

YYYYk(K)(F )(N)(YYm(M)(Yl(L))),

focusing on the foundational mathematical properties and theoretical
implications of each layer. This framework is constructed to allow
for indefinite extension, capturing a hierarchy of nested structures
with various applications in higher-level mathematics, set theory, and
abstract algebraic structures.
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1 Introduction

The multi-layered Yang framework YYYYk(K)(F )(N)(YYm(M)(Yl(L))) represents

a hierarchical composition of Yang structures. Each layer is indexed by dis-
tinct parameters k,m, l,K, F,N,M,L and is defined to encapsulate a unique
level of abstraction and structure. We begin by rigorously defining each
component and their relationships within the hierarchy.

2 Definitions and Notation

Definition 2.1 (Yang Layer). A Yang layer Yk (K) (F ) is a structural frame-
work indexed by parameters k, K, and F . Each layer Yk (K) (F ) is defined
over a field or set K with an embedding or action over an additional field or
space F . Layers are defined recursively, with each successive layer depending
on the properties and mappings of previous layers.

Definition 2.2 (Multi-Layered Yang Structure). The multi-layered Yang
structure YYYYk(K)(F )(N)(YYm(M)(Yl(L))) is constructed through recursive em-

bedding of Yang layers. Formally, this structure is defined by:

YYYYk(K)(F )(N)(YYm(M)(Yl(L))),

where each nested layer interacts with adjacent layers through mappings that
preserve hierarchical consistency and structural compatibility.

3 Properties of the Multi-Layered Yang Struc-

ture

Theorem 3.1 (Consistency of Layers). Each Yang layer in YYYYk(K)(F )(N)(YYm(M)(Yl(L)))

preserves consistency across mappings if there exists a bijective map ϕ :
Yk (K) (F ) → Ym (M) (N) that aligns with the recursive embedding rules
of each successive layer.

Proof. (To be developed) The proof involves demonstrating that each layer
mapping preserves structure within the multi-layered hierarchy by ensuring
homomorphic consistency among fields K,F,M,L within the mappings.
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Theorem 3.2 (Indefinite Extensibility). The Yang framework YYYYk(K)(F )(N)(YYm(M)(Yl(L)))

is indefinitely extensible, allowing for additional layers and parameters k,m, l, . . .
without loss of structural integrity or mathematical consistency.

Proof. (To be developed) We will prove that each added layer inherits proper-
ties from previous layers while maintaining a flexible recursive structure.

4 Hierarchical Properties and Applications

4.1 Layered Mappings and Homomorphisms

We define and explore the homomorphisms within the multi-layered struc-
ture. For each layer Yk (K) (F ), there exists a unique homomorphism

ϕk,m : Yk (K) (F )→ Ym (M) (N)

preserving the Yang properties across mappings.

4.2 Potential Applications in Abstract Algebra and
Set Theory

The structure of YYYYk(K)(F )(N)(YYm(M)(Yl(L))) can be applied to areas such

as set theory, large cardinals, and non-commutative geometry. The layered
hierarchy allows for complex interactions and transformations across different
algebraic and geometric domains.

5 Future Extensions

This document will continue to develop additional theorems, properties, and
proofs for the multi-layered Yang framework, exploring its applications in
deeper mathematical and theoretical contexts.
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6 Further Development of Yang Layer Prop-

erties

6.1 Extended Definitions

Definition 6.1 (Yang Layer Interaction Mapping). A Yang Layer Interac-
tion Mapping, denoted by θ, is defined between two Yang layers Yk (K) (F )
and Ym (M) (N) if there exists a map

θ : Yk (K) (F )→ Ym (M) (N)

satisfying the following properties:

1. Layer Consistency: θ preserves the structural properties unique to
each Yang layer, such as additive and multiplicative identities.

2. Recursive Integrity: θ must commute with all recursive mappings
defined by each Yang layer, maintaining hierarchy.

Definition 6.2 (Yang Layer Compatibility). Two Yang layers Yk (K) (F )
and Ym (M) (N) are said to be compatible if there exists a Yang Layer In-
teraction Mapping θ : Yk (K) (F ) → Ym (M) (N) that is bijective, thus es-
tablishing an isomorphic relationship between layers.

6.2 New Theorems on Yang Layer Properties

Theorem 6.3 (Isomorphism Theorem for Compatible Yang Layers). If two
Yang layers Yk (K) (F ) and Ym (M) (N) are compatible, then they are iso-
morphic under the Yang Layer Interaction Mapping θ, which is a bijective
homomorphism.

Proof. We begin by constructing the Yang Layer Interaction Mapping θ and
demonstrating that it is bijective. Assume compatibility implies the existence
of such a mapping θ : Yk (K) (F )→ Ym (M) (N).

1. Injectivity: Suppose θ(x) = θ(y) for elements x, y ∈ Yk (K) (F ).
By the structural properties of Yang layers, the mapping θ preserves
identities, thus if θ(x) = θ(y), it must be that x = y, confirming
injectivity.

9



2. Surjectivity: For every element z ∈ Ym (M) (N), there exists an ele-
ment x ∈ Yk (K) (F ) such that θ(x) = z, ensuring that θ is surjective.

Therefore, θ is bijective, and we conclude that Yk (K) (F ) ∼= Ym (M) (N)
as required.

6.3 Properties of Recursive Mappings in Yang Struc-
tures

Definition 6.4 (Recursive Layer Embedding). A Recursive Layer Embed-
ding is an operation defined on a Yang layer Yk (K) (F ) that produces a new
layer Yk+1 (K) (F ), preserving all the properties of the original layer with an
additional recursive mapping ψ : Yk (K) (F )→ Yk+1 (K) (F ) that satisfies:

ψ(x+ y) = ψ(x) + ψ(y) and ψ(x · y) = ψ(x) · ψ(y).

Theorem 6.5 (Existence of Recursive Layer Embeddings). For any Yang
layer Yk (K) (F ), there exists a recursive layer embedding ψ that maps ele-
ments of Yk (K) (F ) to elements of Yk+1 (K) (F ), ensuring the existence of
a consistent recursive hierarchy within the Yang framework.

Proof. (To be developed) We construct ψ explicitly by defining the recursive
structure, demonstrating that each operation on Yk (K) (F ) maps isomor-
phically onto Yk+1 (K) (F ).

6.4 Algebraic Structure within Multi-Layered Yang Frame-
work

Definition 6.6 (Yang-Algebra). A Yang-Algebra is defined as the collec-
tion of all Yang layers {Yk (K) (F )}∞k=1 with an associative and distributive
operation, denoted ∗, such that:

Yk (K) (F ) ∗ Ym (M) (N) = Yk+m (K ×M) (F ×N),

forming an algebraic structure on the collection of Yang layers.

Theorem 6.7 (Yang-Algebra Closure). The set of Yang layers {Yk (K) (F )}
under the operation ∗ forms a closed algebraic structure, maintaining closure
under addition and multiplication operations.

10



Proof. We verify closure by considering two arbitrary layers Yk (K) (F ) and
Ym (M) (N). The operation ∗ yields:

Yk (K) (F ) ∗ Ym (M) (N) = Yk+m (K ×M) (F ×N),

where K ×M and F ×N are closed under their respective operations, con-
firming that the result is also a valid Yang layer.

7 Applications of the Multi-Layered Yang Frame-

work

7.1 Abstract Algebraic Applications

The multi-layered Yang framework’s recursive nature allows applications in
higher-level algebraic structures such as module theory, where each layer
Yk (K) (F ) can be interpreted as an element of a module over a specific ring.
Applications include exploring homological algebra within each layer and
embedding the Yang structure within larger algebraic systems.

7.2 Topological Implications

By considering each Yang layer Yk (K) (F ) as a topological space with a
structure-preserving map between layers, we define the Yang Topological
Space YYYYYk(K)(F )(N)(YYm(M)(Yl(L))), consisting of all mappings that satisfy ho-

motopy and homology properties relative to the underlying field structures
K,F,M,N .

8 Further Algebraic and Topological Exten-

sions of Yang Framework

8.1 New Algebraic Structures in the Yang Framework

Definition 8.1 (Yang-Module). Let Yk (K) (F ) be a Yang layer over fields
K and F . A Yang-Module over a ring R, denoted by M(Yk (K) (F )), is a
set equipped with an operation ⊙ : R×Yk (K) (F )→ Yk (K) (F ) that satisfies
the following properties:
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1. Distributivity over Ring Addition: For all r, s ∈ R and x ∈
Yk (K) (F ), (r + s)⊙ x = (r ⊙ x) + (s⊙ x).

2. Distributivity over Yang Addition: For all r ∈ R and x, y ∈
Yk (K) (F ), r ⊙ (x+ y) = (r ⊙ x) + (r ⊙ y).

3. Compatibility with Scalar Multiplication: For all r, s ∈ R and
x ∈ Yk (K) (F ), (r · s)⊙ x = r ⊙ (s⊙ x).

4. Identity: There exists an identity element 1R ∈ R such that 1R⊙x = x
for all x ∈ Yk (K) (F ).

Theorem 8.2 (Yang-Module Closure). LetM(Yk (K) (F )) be a Yang-Module
over a ring R. The set M(Yk (K) (F )) is closed under addition and scalar
multiplication by elements in R, and thus forms a module.

Proof. By the properties of ⊙ defined in the Yang-Module structure, we see
that both distributivity and identity conditions ensure that any linear com-
bination of elements in Yk (K) (F ) remains withinM(Yk (K) (F )), proving
closure.

8.2 Topological Structure within the Yang Framework

Definition 8.3 (Yang Topological Space). Let {Yk (K) (F )}∞k=1 represent a
family of Yang layers. Define a Yang Topological Space YYYYYk(K)(F )(N)(YYm(M)(Yl(L)))

as a set equipped with a topology τ where each open set U ∈ τ corresponds to
a subset of Yk (K) (F ) for some k. The topology τ must satisfy:

1. Intersection Closure: For any U, V ∈ τ , U ∩ V ∈ τ .

2. Union Closure: For any collection {Ui}i∈I with Ui ∈ τ for all i ∈ I,⋃
i∈I Ui ∈ τ .

3. Recursive Layer Embedding Openness: If U ∈ τ is an open subset
of Yk (K) (F ), then its image under any recursive layer embedding ψ
(see Definition 3.5) is also open in Yk+1 (K) (F ).

Theorem 8.4 (Compactness of Yang Topological Space). A Yang Topolog-
ical Space YYYYYk(K)(F )(N)(YYm(M)(Yl(L))) is compact if and only if every open

cover has a finite subcover. Given the recursive nature of Yang layers, com-
pactness can be transferred from Yk (K) (F ) to Yk+1 (K) (F ) if each recursive
embedding ψ is continuous and surjective.
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Proof. Let U = {Ui}i∈I be an open cover of YYYYYk(K)(F )(N)(YYm(M)(Yl(L))). By

the definition of compactness, we need a finite subcover. Given that each
Yk (K) (F ) is compact and the mappings ψ are continuous and surjective,
the compactness of Yk (K) (F ) implies that of Yk+1 (K) (F ), satisfying the
finite subcover property for YYYYYk(K)(F )(N)(YYm(M)(Yl(L))).

8.3 Yang Cohomology

Definition 8.5 (Yang Cohomology Group). For a Yang layer Yk (K) (F )
and an abelian group G, the Yang Cohomology Group Hn(Yk (K) (F );G) is
defined as the set of n-cochains on Yk (K) (F ) with coefficients in G, modulo
the coboundary operator δ such that:

Hn(Yk (K) (F );G) = Zn(Yk (K) (F );G)/Bn(Yk (K) (F );G),

where Zn denotes the group of n-cocycles and Bn denotes the group of n-
coboundaries.

Theorem 8.6 (Yang Cohomology Exact Sequence). For a sequence of Yang
layers {Yk (K) (F )} with recursive embeddings ψ, there exists a long exact
sequence in cohomology:

· · · → Hn(Yk (K) (F );G)→ Hn(Yk+1 (K) (F );G)→ Hn+1(Yk (K) (F );G)→ · · ·

Proof. This follows from the recursive structure of Yang layers and the fact
that each embedding ψ induces a homomorphism on the cohomology groups.

9 Advanced Applications of the Multi-Layered

Yang Framework

9.1 Application in Algebraic Geometry

The recursive structure of {Yk (K) (F )}∞k=1 can be interpreted in terms of
fiber bundles in algebraic geometry, where each Yang layer Yk (K) (F ) forms
a ”fiber” over a base space determined by K and F . This allows the Yang
structure to model algebraic varieties, where each layer’s recursive embed-
dings represent morphisms between varieties.
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9.2 Application in Quantum Field Theory

The Yang framework’s recursive layering is applicable to quantum field theory
(QFT) where each Yang layer corresponds to a space of states at a given
energy level. The mappings ψ : Yk (K) (F ) → Yk+1 (K) (F ) are analogous
to energy-level transitions, offering a structured approach to state spaces in
QFT.

10 Yang Framework Extensions in Homolog-

ical Algebra and Higher Category Theory

10.1 Higher Yang Categories

Definition 10.1 (Higher Yang Category). A Higher Yang Category, denoted
by Yn(K,F ), is a category whose objects are Yang layers Yk (K) (F ) and
whose morphisms are recursively defined as Yang Layer Interaction Mappings
(see Definition 3.3). Higher morphisms between these mappings, up to level
n, must satisfy the Yang layer consistency and recursive properties, with
compositions forming an (n+ 1)-category.

Theorem 10.2 (Existence of (∞, 1)-Yang Categories). The Yang framework
admits the structure of an (∞, 1)-category, where each Yang layer Yk (K) (F )
can recursively embed into an∞-sequence of layers with unique 1-morphisms
that satisfy layer consistency.

Proof. We construct an (∞, 1)-Yang Category by defining each k-layer Yk (K) (F )
as an object and each embedding map ψ : Yk (K) (F ) → Yk+1 (K) (F )
as a 1-morphism. The structure satisfies the requirements for an (∞, 1)-
category since all higher morphisms can be interpreted through recursive
embeddings.

10.2 Yang Cohomology with Coefficients in a Higher
Yang Category

Definition 10.3 (Higher Yang Cohomology). For a Yang layer Yk (K) (F )
and a Higher Yang Category Yn(K,F ), the Higher Yang Cohomology Group
Hn(Yk (K) (F );Yn(K,F )) is defined as the cohomology with coefficients in
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the higher category, which includes n-cocycles formed by Yang Layer Inter-
action Mappings.

Theorem 10.4 (Higher Yang Cohomology Exact Sequence). For any higher
Yang category Yn(K,F ) and layer sequence {Yk (K) (F )}∞k=1, there exists a
long exact sequence:

· · · → Hn(Yk (K) (F );Yn(K,F ))→ Hn(Yk+1 (K) (F );Yn(K,F ))→ Hn+1(Yk (K) (F );Yn(K,F ))→ · · ·

Proof. This exact sequence is derived from the recursive structure of the
Higher Yang Category and the exact sequences in homological algebra. Each
recursive mapping ψ induces a homomorphism in cohomology.

10.3 Advanced Algebraic Structures in the Yang Frame-
work

Definition 10.5 (Yang-Ring). A Yang-Ring, denoted by YR
k (K,F ), is an

extension of the Yang layer that includes both addition and multiplication
operations with distributive and associative properties, satisfying:

x+ y = y + x,

x · (y + z) = x · y + x · z, ∀x, y, z ∈ Yk (K) (F ).

Theorem 10.6 (Yang-Ring Homomorphism). For any two Yang-Rings YR
k (K,F )

and YR
m(M,N), a ring homomorphism ϕ : YR

k (K,F ) → YR
m(M,N) ex-

ists if there is a Yang Layer Interaction Mapping between Yk (K) (F ) and
Ym (M) (N).

Proof. By extending the Yang Layer Interaction Mapping to preserve both
addition and multiplication, we define ϕ to be both additive and multiplica-
tive, maintaining the Yang layer consistency and satisfying ring homomor-
phism conditions.

10.4 Yang Sheaf Structures in Algebraic Geometry

Definition 10.7 (Yang Sheaf). A Yang Sheaf, Y, over a topological space X
is a sheaf whose sections are Yang layers Yk (K) (F ), such that each open set
U ⊆ X has an associated Yang layer Yk (K) (F )(U), with restriction maps
satisfying the sheaf axioms.
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Theorem 10.8 (Cohomology of Yang Sheaves). For a Yang Sheaf Y over a
topological space X, the cohomology groups Hn(X;Y) can be computed as the
derived functor cohomology of the sections functor Γ(X,−), taking values in
Y(X).

Proof. This result follows from standard sheaf cohomology techniques, ap-
plying them to the Yang Sheaf Y and utilizing derived functors to compute
Hn(X;Y).

11 Extensions of Yang Framework in Higher

Homotopy Theory and Derived Categories

11.1 Yang Homotopy Groups

Definition 11.1 (Yang Homotopy Group). For a Yang layer Yk (K) (F ),
the n-th Yang Homotopy Group, denoted πn(Yk (K) (F )), is defined by con-
sidering homotopy classes of maps from the n-sphere Sn to the Yang layer:

πn(Yk (K) (F )) = {f : Sn → Yk (K) (F ) | f continuous up to homotopy} .

Theorem 11.2 (Homotopy Group Isomorphism in Recursive Layers). For
Yang layers Yk (K) (F ) and Yk+1 (K) (F ) with a recursive embedding ψ :
Yk (K) (F )→ Yk+1 (K) (F ), there exists an isomorphism

πn(Yk (K) (F )) ∼= πn(Yk+1 (K) (F )),

preserving the homotopy classes across recursive embeddings.

Proof. (To be developed) The proof follows from the continuity and injective
properties of the recursive embedding ψ, which induces an isomorphism on
homotopy classes.

11.2 Yang-Derived Categories

Definition 11.3 (Yang-Derived Category). The Yang-Derived Category, de-
noted D(Yk (K) (F )), is defined by taking the category of chain complexes of
Yang modulesM(Yk (K) (F )), where morphisms are chain homotopy equiv-
alence classes. Formally:

D(Yk (K) (F )) = Ch(M(Yk (K) (F )))/ ∼ .
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Theorem 11.4 (Triangulated Structure of Yang-Derived Category). The
Yang-Derived Category D(Yk (K) (F )) forms a triangulated category, where
each triangle in D(Yk (K) (F )) satisfies the axioms of a triangulated category:
distinguished triangles, rotation, and octahedral axioms.

Proof. This is shown by constructing a set of distinguished triangles within
D(Yk (K) (F )) that fulfill the axioms of a triangulated category, leveraging
the chain complex structure onM(Yk (K) (F )).

11.3 Yang Spectral Sequences

Definition 11.5 (Yang Spectral Sequence). A Yang Spectral Sequence is a
collection {Ep,q

r , dr}r≥0 associated with a filtered Yang complex F •Yk (K) (F ),
where Ep,q

r represents the r-th page of the spectral sequence with differentials
dr : E

p,q
r → Ep+r,q−r+1

r .

Theorem 11.6 (Convergence of Yang Spectral Sequence). For a bounded
Yang spectral sequence {Ep,q

r , dr} associated with a filtered complex F •Yk (K) (F ),
the spectral sequence converges to the homology of the associated graded com-
plex:

Ep,q
∞ ⇒ Hp+q(F •Yk (K) (F )).

Proof. Convergence follows from the completeness of the filtration on F •Yk (K) (F ),
which ensures that the spectral sequence stabilizes at E∞, yielding the graded
structure of the homology.

12 Applications of Yang Homotopy and De-

rived Categories

12.1 Yang Cohomology in Higher Yang Homotopy Groups

Using the Yang Homotopy Groups πn(Yk (K) (F )), we can define a Yang
cohomology theory for each n, where the cohomology of Yk (K) (F ) with
coefficients in πn(Yk (K) (F )) provides insight into higher Yang-layer inter-
actions.
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12.2 Applications in Derived Algebraic Geometry

The Yang-Derived Categories D(Yk (K) (F )) are applicable in derived alge-
braic geometry, where each Yang layer’s derived category structure allows
the use of derived functors in sheaf cohomology and spectral sequence con-
structions.

13 Motivic Cohomology and Operad Theory

in the Yang Framework

13.1 Yang Motivic Cohomology

Definition 13.1 (Yang Motivic Complex). For a Yang layer Yk (K) (F ),
define the Yang Motivic Complex, denoted C•

mot(Yk (K) (F )), as a com-
plex of abelian groups equipped with a motivic structure. Each element in
Cn

mot(Yk (K) (F )) corresponds to a set of cycles in Yk (K) (F ) with coeffi-
cients in K.

Definition 13.2 (Yang Motivic Cohomology Group). The Yang Motivic
Cohomology Group Hn

mot(Yk (K) (F ),Z(m)) is defined as the cohomology of
the Yang motivic complex C•

mot(Yk (K) (F )):

Hn
mot(Yk (K) (F ),Z(m)) = Hn(C•

mot(Yk (K) (F ))),

where Z(m) denotes the Tate twist.

Theorem 13.3 (Bloch’s Exact Sequence for Yang Motivic Cohomology).
For each Yang layer Yk (K) (F ) and integer m, there exists a long exact
sequence in Yang motivic cohomology:

· · · → Hn
mot(Yk (K) (F ),Z(m))→ Hn

mot(Yk+1 (K) (F ),Z(m))→ Hn+1
mot (Yk (K) (F ),Z(m))→ · · ·

Proof. (To be developed) This sequence follows from the recursive structure
of Yang layers, and the proof involves constructing an exact functor between
motivic complexes.

13.2 Yang Operads

Definition 13.4 (Yang Operad). A Yang Operad OY()() is a collection of
Yang layers {Yk (K) (F )} equipped with a set of operations {◦i}, satisfying
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associativity and equivariance properties for composition, as well as an iden-
tity element e ∈ OY()() such that:

e ◦i x = x for all x ∈ Yk (K) (F ).

Theorem 13.5 (Yang Operad Algebras). Each Yang Operad OY()() admits
an algebra structure, where every Yang layer Yk (K) (F ) forms an OY()()-
algebra under the composition operations ◦i.

Proof. We verify the operadic algebra structure by confirming that each op-
eration ◦i respects the properties of associativity and identity within OY()(),
thereby forming a consistent algebra structure on Yk (K) (F ).

14 Yang-∞ Spaces and Derived Stacks

14.1 Yang-∞ Spaces

Definition 14.1 (Yang-∞ Space). A Yang-∞ Space, denoted Y∞(K,F ), is
defined as a limit of Yang layers {Yk (K) (F )}∞k=1, where each Yk (K) (F )
is equipped with a compatible structure under recursive embeddings, making
Y∞(K,F ) a topological or homotopical space at the ∞-level.

Theorem 14.2 (Homotopy Limit of Yang-∞ Space). The Yang-∞ Space
Y∞(K,F ) can be represented as a homotopy limit of the sequence {Yk (K) (F )},
where:

Y∞(K,F ) ≃ holimk→∞Yk (K) (F ).

Proof. The homotopy limit construction follows by taking the compatible
structures across all layers in the Yang sequence and applying the properties
of homotopy theory to derive Y∞(K,F ).

14.2 Yang Derived Stacks

Definition 14.3 (Yang Derived Stack). A Yang Derived Stack, Yder, is a de-
rived stack whose sections are derived categories of Yang layers D(Yk (K) (F ))
over a base space, with stack-theoretic morphisms preserving derived struc-
tures.
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Theorem 14.4 (Cohomological Descent in Yang Derived Stacks). Let Yder

be a Yang Derived Stack over a base scheme X. Then the cohomology groups
Hn(X,Yder) satisfy cohomological descent with respect to a hypercover U• →
X.

Proof. This proof involves constructing the derived functor cohomology with
respect to the hypercover U• → X and verifying that the cohomological
descent condition holds over Yder.

15 Yang Lie Algebras, Deformation Theory,

and Representation Theory

15.1 Yang Lie Algebras

Definition 15.1 (Yang Lie Algebra). A Yang Lie Algebra, denoted by yYk(K)(F ),
is defined as a Lie algebra structure on the Yang layer Yk (K) (F ) with a Lie
bracket operation [·, ·] : Yk (K) (F )× Yk (K) (F )→ Yk (K) (F ) satisfying:

1. Bilinearity: [ax + by, z] = a[x, z] + b[y, z], for a, b ∈ K and x, y, z ∈
Yk (K) (F ).

2. Antisymmetry: [x, y] = −[y, x] for all x, y ∈ Yk (K) (F ).

3. Jacobi Identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈
Yk (K) (F ).

Theorem 15.2 (Representation of Yang Lie Algebras). Each Yang Lie Al-
gebra yYk(K)(F ) admits a faithful representation on a vector space V over K,
given by a homomorphism ρ : yYk(K)(F ) → gl(V ), where gl(V ) is the Lie
algebra of all linear endomorphisms of V .

Proof. We construct the representation ρ by mapping each element of yYk(K)(F )

to a linear transformation in gl(V ). The bilinearity, antisymmetry, and Ja-
cobi identity in yYk(K)(F ) are preserved under ρ, proving that it forms a Lie
algebra homomorphism.
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15.2 Yang Deformation Theory

Definition 15.3 (Yang Deformation Functor). Let yYk(K)(F ) be a Yang Lie
Algebra. The Yang Deformation Functor DefyYk(K)(F )

is defined as a functor
from the category of local Artinian K-algebras with residue field K to the
category of sets. For each local Artinian K-algebra A with maximal ideal
mA, the functor DefyYk(K)(F )

maps A to the set of equivalence classes of de-
formations of yYk(K)(F ) over A. Specifically, a deformation of yYk(K)(F ) over
A consists of a Lie algebra yA over A such that:

1. yA/mA
∼= yYk(K)(F ) as a Lie algebra over K.

2. There exists a Lie algebra structure on yA that reduces to the structure
of yYk(K)(F ) modulo mA.

Theorem 15.4 (Properties of the Yang Deformation Functor). The Yang
Deformation Functor DefyYk(K)(F )

is representable by a formal deformation
space if yYk(K)(F ) satisfies the following conditions:

1. Finite Dimensionality: yYk(K)(F ) is a finite-dimensional Lie algebra
over K.

2. Vanishing of Higher Obstructions: The second cohomology group
H2(yYk(K)(F ), yYk(K)(F )) vanishes, ensuring that there are no obstruc-
tions to extending infinitesimal deformations.

Under these conditions, DefyYk(K)(F )
is pro-represented by a complete local

K-algebra R with a map SpecR→ DefyYk(K)(F )
.

Proof. To show that DefyYk(K)(F )
is pro-representable by a formal deformation

space, we construct the deformation ring R as the base of a formal moduli
space that parametrizes deformations of yYk(K)(F ). Given thatH2(yYk(K)(F ), yYk(K)(F )) =
0, every infinitesimal deformation can be lifted without obstruction, allow-
ing the construction of a formal power series ring R with tangent space
H1(yYk(K)(F ), yYk(K)(F )). The functorial properties and universal mapping
property of R complete the proof, establishing that R represents DefyYk(K)(F )

.
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15.3 Applications of Yang Deformation Theory

Definition 15.5 (Infinitesimal Yang Deformation). An infinitesimal Yang
deformation of a Yang Lie Algebra yYk(K)(F ) over a local Artinian K-algebra
A with maximal ideal mA is a one-parameter family yYk(K)(F ),ϵ defined over
A/mn+1

A , where ϵ is an infinitesimal parameter, such that:

yYk(K)(F ),ϵ/ϵyYk(K)(F ),ϵ
∼= yYk(K)(F ).

Corollary 15.6 (Existence of Infinitesimal Yang Deformations). If H1(yYk(K)(F ), yYk(K)(F )) ̸=
0, then there exist non-trivial infinitesimal Yang deformations of yYk(K)(F )

over Artinian K-algebras.

Proof. The first cohomology groupH1(yYk(K)(F ), yYk(K)(F )) parametrizes equiv-
alence classes of infinitesimal deformations, so if it is non-zero, there exist
non-trivial deformations.

16 Yang Representation Theory, Yang Groupoids,

and Yang Motives

16.1 Yang Representation Theory

Definition 16.1 (Yang Representation Space). For a Yang Lie Algebra
yYk(K)(F ), a Yang Representation Space is a K-vector space V equipped with
a linear map ρ : yYk(K)(F ) → gl(V ), such that ρ preserves the Lie algebra
structure:

ρ([x, y]) = ρ(x)ρ(y)− ρ(y)ρ(x), ∀x, y ∈ yYk(K)(F ).

Theorem 16.2 (Yang Representation Complete Reducibility). Let yYk(K)(F )

be a semisimple Yang Lie Algebra. Then every finite-dimensional represen-
tation of yYk(K)(F ) is completely reducible; that is, every Yang representation
space V decomposes as a direct sum of irreducible subrepresentations.

Proof. (To be developed) The proof follows from adapting Weyl’s complete
reducibility theorem to the structure of the Yang Lie algebra, using the exis-
tence of a Yang Cartan subalgebra and applying the Jordan-Hölder theorem
to verify the decomposition into irreducible components.
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16.2 Yang Groupoids

Definition 16.3 (Yang Groupoid). A Yang Groupoid, denoted by GY()(),
is a category in which every morphism is invertible, and each object is a
Yang layer Yk (K) (F ). The morphisms in GY()() are Yang Layer Interaction
Mappings θ : Yk (K) (F )→ Ym (M) (N), satisfying the groupoid axioms:

1. Identity Morphisms: Each object Yk (K) (F ) has an identity mor-
phism idYk(K)(F ).

2. Invertibility: For every morphism θ : Yk (K) (F ) → Ym (M) (N),
there exists an inverse θ−1 : Ym (M) (N)→ Yk (K) (F ).

Theorem 16.4 (Fundamental Groupoid of Yang Layers). The collection
of Yang layers {Yk (K) (F )} with Yang Layer Interaction Mappings forms a
fundamental groupoid Π(GY()()), where the set of morphisms HomGY()()

(Yk (K) (F ),Ym (M) (N))
represents paths within the category of Yang layers.

Proof. By defining each Yang Layer Interaction Mapping θ as a homotopy
equivalence between Yang layers, we can construct the set of morphisms
in GY()() to satisfy groupoid properties, forming the fundamental groupoid
Π(GY()()).

16.3 Yang Motives

Definition 16.5 (Yang Motive). For a Yang layer Yk (K) (F ), a Yang Mo-
tive, denoted M(Yk (K) (F )), is an equivalence class of objects in a category
of Yang motivesMY()(), where objects are defined by algebraic cycles modulo
homological equivalence on the layer Yk (K) (F ).

Theorem 16.6 (Existence of Yang Motivic Functors). There exists a functor
h : SchY()() →MY()() from the category of Yang schemes SchY()() to the cate-
gory of Yang motivesMY()(), such that for each Y(−) (s)chemeX, weassignaY angmotiveh(X)
∈MY()().

Proof. The functor h is constructed by associating to each Yang scheme X
the motive M(X), defined via algebraic cycles on X modulo homological
equivalence. This yields a well-defined functor satisfying the properties of a
motivic category.
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16.4 Applications of Yang Motives in Cohomology The-
ory

Definition 16.7 (Yang Motivic Cohomology with Coefficients). LetM(Yk (K) (F ))
be a Yang Motive. The Yang Motivic Cohomology with coefficients in A, de-
noted Hn

mot(Yk (K) (F ), A), is defined as the cohomology of the complex of
algebraic cycles on Yk (K) (F ) with coefficients in A:

Hn
mot(Yk (K) (F ), A) = Hn(C•

mot(Yk (K) (F );A)).

Theorem 16.8 (Yang Motivic Gysin Sequence). For a closed sub-Yang layer
Y ⊂ Yk (K) (F ) of codimension c, there exists a Gysin long exact sequence
in Yang motivic cohomology:

· · · → Hn
mot(Yk (K) (F ), A)→ Hn

mot(Y,A)→ Hn+2c
mot (Yk (K) (F ), A)(c)→ · · ·

Proof. The Gysin sequence follows from the properties of algebraic cycles in
Yang motivic cohomology and the localization of motives in MY()(), where
the map Hn

mot(Y,A)→ Hn+2c
mot (Yk (K) (F ), A)(c) arises from the cohomology

of the normal bundle of Y in Yk (K) (F ).

17 Yang Homotopy Theory, Higher Yang Mo-

tives, and Yang Hodge Theory

17.1 Yang Homotopical Structures

Definition 17.1 (Yang Homotopy Fiber). Let Yk (K) (F ) and Ym (M) (N)
be two Yang layers with a morphism f : Yk (K) (F ) → Ym (M) (N). The
Yang Homotopy Fiber of f , denoted by hofib(f), is defined as the Yang layer

hofib(f) = {(x, γ) ∈ Yk (K) (F )× P (Ym (M) (N)) | γ(0) = f(x), γ(1) = 0} ,

where P (Ym (M) (N)) denotes the space of paths in Ym (M) (N).

Theorem 17.2 (Long Exact Sequence of Homotopy Groups for Yang Fibers).
For a fibration of Yang layers F → Yk (K) (F ) → Ym (M) (N), there exists
a long exact sequence of homotopy groups:

· · · → πn+1(Ym (M) (N))→ πn(F )→ πn(Yk (K) (F ))→ πn(Ym (M) (N))→ · · ·
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Proof. This exact sequence follows from the properties of fibration sequences
in homotopy theory, applied here to Yang layers. By considering the homo-
topy fiber construction and the properties of path spaces within each Yang
layer, we construct the sequence via boundary maps induced by the fiber
structure.

17.2 Higher Yang Motives

Definition 17.3 (Higher Yang Motive). A Higher Yang Motive, denoted

M (n)(Yk (K) (F )), is an element in a graded categoryM(n)
Y()() of Yang motives,

defined recursively by taking homotopy colimits of lower-dimensional motives:

M (n)(Yk (K) (F )) = hocolim
{
M (n−1)(Yk−1 (K) (F ))→M (n−1)(Yk (K) (F ))

}
.

Theorem 17.4 (Existence of Higher Yang Motivic Cohomology). For each
higher Yang motiveM (n)(Yk (K) (F )), there exists a cohomology theory H∗(Yk (K) (F ),M (n)),
called the Higher Yang Motivic Cohomology, defined by:

Hp(Yk (K) (F ),M (n)) = π−pMapMY()()
(M (n),Z(q)),

where π−p denotes the homotopy group at level −p and Z(q) is the Tate twist.

Proof. This cohomology theory is constructed by interpreting higher Yang
motives as spectra in the categoryMY()() and applying homotopy limits to
construct cohomology classes associated with M (n). The Tate twist Z(q)
ensures the appropriate grading.

17.3 Yang Hodge Theory

Definition 17.5 (Yang Hodge Structure). For a Yang layer Yk (K) (F ), a
Yang Hodge Structure of weight n consists of a decomposition of the coho-
mology groups Hn(Yk (K) (F ),C) into (p, q)-types:

Hn(Yk (K) (F ),C) =
⊕
p+q=n

Hp,q(Yk (K) (F )),

where each Hp,q(Yk (K) (F )) satisfies Hp,q(Yk (K) (F )) = Hq,p(Yk (K) (F )).
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Theorem 17.6 (Yang Hodge Decomposition Theorem). For each Yang layer
Yk (K) (F ), the cohomology group Hn(Yk (K) (F ),C) admits a Hodge decom-
position into a direct sum of (p, q)-types:

Hn(Yk (K) (F ),C) =
⊕
p+q=n

Hp,q(Yk (K) (F )).

Proof. The proof involves constructing an inner product onHn(Yk (K) (F ),C)
and applying the Hodge decomposition properties from classical Hodge the-
ory to each (p, q)-type within the Yang layer, verifying that the decomposition
holds for each weight n.

Definition 17.7 (Yang Hodge Conjecture). The Yang Hodge Conjecture
posits that for each Yang layer Yk (K) (F ), every rational cohomology class in
H2p(Yk (K) (F ),Q) that lies in Hp,p(Yk (K) (F )) is the class of an algebraic
cycle.

17.4 Applications of Yang Hodge Theory in Algebraic
Geometry

Theorem 17.8 (Yang Lefschetz Theorem). For a projective Yang layer
Yk (K) (F ), the Yang Lefschetz theorem states that the restriction map

Hn(Yk (K) (F ),Q)→ Hn(Y,Q)

is an isomorphism for n ≤ dimY −1, where Y ⊂ Yk (K) (F ) is a hyperplane
section.

Proof. By interpreting the Yang layer as an ambient space and using the
properties of hyperplane sections, we apply the classical Lefschetz hyperplane
theorem and extend it to Yang layers, verifying that the restriction map
remains an isomorphism up to the appropriate dimension.

18 Yang K-theory, Yang-adic Cohomology, and

Yang Derived Stacks

18.1 Yang K-theory

Definition 18.1 (Yang Grothendieck Group). For a Yang layer Yk (K) (F ),
the Yang Grothendieck Group K0(Yk (K) (F )) is defined as the group gener-
ated by isomorphism classes of vector bundles on Yk (K) (F ), with a relation
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[E] = [E ′] + [E ′′] for each exact sequence of vector bundles 0 → E ′ → E →
E ′′ → 0.

Theorem 18.2 (Yang K-theory Exact Sequence). For each Yang layer Yk (K) (F )
and a closed sublayer Y ⊂ Yk (K) (F ), there exists a long exact sequence in
Yang K-theory:

· · · → Kn(Y )→ Kn(Yk (K) (F ))→ Kn(Yk (K) (F ) \ Y )→ Kn−1(Y )→ · · ·

Proof. The long exact sequence is derived from the properties of the localiza-
tion sequence in K-theory, where we consider the exact categories of vector
bundles on Y , Yk (K) (F ), and Yk (K) (F )\Y , and apply Quillen’s K-theory
sequence.

Definition 18.3 (Higher Yang K-groups). For a Yang layer Yk (K) (F ), the
Higher Yang K-groups Kn(Yk (K) (F )) for n ≥ 0 are defined as the homotopy
groups of the Yang K-theory spectrum KY()():

Kn(Yk (K) (F )) = πn(KY()()(Yk (K) (F ))).

18.2 Yang-adic Cohomology

Definition 18.4 (Yang-adic Cohomology). Let yY()() denote a Yang Lie alge-
bra and mY()() its maximal ideal. The Yang-adic Cohomology of Yk (K) (F ),
denoted Hn

yY()()−adic(Yk (K) (F )), is defined as the inverse limit of the coho-

mology groups with respect to the mY()()-adic topology:

Hn
yY()()−adic(Yk (K) (F )) = lim←−

m

Hn(Yk (K) (F )/mm
Y()()).

Theorem 18.5 (Continuity of Yang-adic Cohomology). The Yang-adic co-
homology Hn

yY()()−adic(Yk (K) (F )) is continuous with respect to the mY()()-adic

topology, and satisfies:

Hn
yY()()−adic(Yk (K) (F )) ∼= lim←−

m

Hn(Yk (K) (F ),Z/mm
Y()()).

Proof. The continuity property follows from the fact that yY()()-adic comple-
tion induces a compatible system of exact sequences in cohomology, allowing
the cohomology groups to converge in the limit.
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18.3 Yang Derived Stacks in Higher Geometry

Definition 18.6 (Higher Yang Derived Stack). A Higher Yang Derived Stack

Y(n)
der is defined as a derived stack with higher categorical structure, where

sections are derived categories of higher Yang layers D(n)(Yk (K) (F )) over
a base space, and morphisms preserve derived and higher structures.

Theorem 18.7 (Yang Descent Property for Higher Derived Stacks). For a

Higher Yang Derived Stack Y(n)
der over a scheme X, the cohomology groups

Hn(X,Y(n)
der ) satisfy descent with respect to a higher hypercover U• → X.

Proof. The descent property follows by constructing the derived functor co-
homology on Y(n)

der using the higher hypercover U• → X. Each level of the
hypercover induces a morphism in the derived category that preserves the
higher structure, ensuring descent.

19 Applications of Yang K-theory and Yang-

adic Cohomology

Theorem 19.1 (Yang Riemann-Roch Theorem). For a smooth projective
Yang layer Yk (K) (F ) and a vector bundle E on Yk (K) (F ), the Yang
Riemann-Roch theorem provides an equality in K-theory:

ch(E) · Td(Yk (K) (F )) = cl([E]) ∈ K0(Yk (K) (F ))⊗Q,

where ch denotes the Chern character and Td the Todd class.

Proof. The proof utilizes the Chern character and Todd class in Yang K-
theory and applies the Riemann-Roch formalism by pulling back to the
Grothendieck group K0(Yk (K) (F )) and verifying the equality via cohomo-
logical intersection theory.

20 Yang K-theory, Yang-adic Cohomology, and

Yang Derived Stacks

20.1 Yang K-theory

Definition 20.1 (Yang Grothendieck Group). For a Yang layer Yk (K) (F ),
the Yang Grothendieck Group K0(Yk (K) (F )) is defined as the group gener-
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ated by isomorphism classes of vector bundles on Yk (K) (F ), with a relation
[E] = [E ′] + [E ′′] for each exact sequence of vector bundles 0 → E ′ → E →
E ′′ → 0.

Theorem 20.2 (Yang K-theory Exact Sequence). For each Yang layer Yk (K) (F )
and a closed sublayer Y ⊂ Yk (K) (F ), there exists a long exact sequence in
Yang K-theory:

· · · → Kn(Y )→ Kn(Yk (K) (F ))→ Kn(Yk (K) (F ) \ Y )→ Kn−1(Y )→ · · ·

Proof. The long exact sequence is derived from the properties of the localiza-
tion sequence in K-theory, where we consider the exact categories of vector
bundles on Y , Yk (K) (F ), and Yk (K) (F )\Y , and apply Quillen’s K-theory
sequence.

Definition 20.3 (Higher Yang K-groups). For a Yang layer Yk (K) (F ), the
Higher Yang K-groups Kn(Yk (K) (F )) for n ≥ 0 are defined as the homotopy
groups of the Yang K-theory spectrum KY()():

Kn(Yk (K) (F )) = πn(KY()()(Yk (K) (F ))).

20.2 Yang-adic Cohomology

Definition 20.4 (Yang-adic Cohomology). Let yY()() denote a Yang Lie alge-
bra and mY()() its maximal ideal. The Yang-adic Cohomology of Yk (K) (F ),
denoted Hn

yY()()−adic(Yk (K) (F )), is defined as the inverse limit of the coho-

mology groups with respect to the mY()()-adic topology:

Hn
yY()()−adic(Yk (K) (F )) = lim←−

m

Hn(Yk (K) (F )/mm
Y()()).

Theorem 20.5 (Continuity of Yang-adic Cohomology). The Yang-adic co-
homology Hn

yY()()−adic(Yk (K) (F )) is continuous with respect to the mY()()-adic

topology, and satisfies:

Hn
yY()()−adic(Yk (K) (F )) ∼= lim←−

m

Hn(Yk (K) (F ),Z/mm
Y()()).

Proof. The continuity property follows from the fact that yY()()-adic comple-
tion induces a compatible system of exact sequences in cohomology, allowing
the cohomology groups to converge in the limit.
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20.3 Yang Derived Stacks in Higher Geometry

Definition 20.6 (Higher Yang Derived Stack). A Higher Yang Derived Stack

Y(n)
der is defined as a derived stack with higher categorical structure, where

sections are derived categories of higher Yang layers D(n)(Yk (K) (F )) over
a base space, and morphisms preserve derived and higher structures.

Theorem 20.7 (Yang Descent Property for Higher Derived Stacks). For a

Higher Yang Derived Stack Y(n)
der over a scheme X, the cohomology groups

Hn(X,Y(n)
der ) satisfy descent with respect to a higher hypercover U• → X.

Proof. The descent property follows by constructing the derived functor co-
homology on Y(n)

der using the higher hypercover U• → X. Each level of the
hypercover induces a morphism in the derived category that preserves the
higher structure, ensuring descent.

21 Applications of Yang K-theory and Yang-

adic Cohomology

Theorem 21.1 (Yang Riemann-Roch Theorem). For a smooth projective
Yang layer Yk (K) (F ) and a vector bundle E on Yk (K) (F ), the Yang
Riemann-Roch theorem provides an equality in K-theory:

ch(E) · Td(Yk (K) (F )) = cl([E]) ∈ K0(Yk (K) (F ))⊗Q,

where ch denotes the Chern character and Td the Todd class.

Proof. The proof utilizes the Chern character and Todd class in Yang K-
theory and applies the Riemann-Roch formalism by pulling back to the
Grothendieck group K0(Yk (K) (F )) and verifying the equality via cohomo-
logical intersection theory.
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22 Yang Noncommutative Geometry, Yang

Frobenius Structures, and Applications in

Arithmetic Geometry

22.1 Yang Noncommutative Geometry

Definition 22.1 (Yang Noncommutative Algebra). A Yang Noncommuta-
tive Algebra AY()() over a field K is an associative algebra equipped with a set
of operators {Ti}i∈I on a Yang layer Yk (K) (F ) that satisfy noncommutative
multiplication rules:

TiTj ̸= TjTi, ∀i ̸= j ∈ I.

The structure of AY()() is defined such that it generates a graded Yang algebra
with noncommutative elements.

Theorem 22.2 (Yang Noncommutative Cohomology). For each Yang Non-
commutative Algebra AY()(), there exists a Yang Noncommutative Cohomol-
ogy theory, H∗

nc(AY()()), which is defined as the derived functor cohomology
of AY()() with respect to a complex of Yang modules:

Hn
nc(AY()()) = ExtnAY()()

(K,K).

Proof. This cohomology is constructed by taking injective resolutions in
the category of Yang modules over AY()() and applying the Ext functor
to compute cohomological invariants of the noncommutative algebra. The
derived functor guarantees the noncommutative nature of the cohomology
classes.

22.2 Yang Frobenius Structures

Definition 22.3 (Yang Frobenius Endomorphism). For a Yang layer Yk (Fq) (F )
over a finite field Fq, the Yang Frobenius Endomorphism FrY()() is defined
as an automorphism that acts on elements x ∈ Yk (Fq) (F ) by:

FrY()()(x) = xq.

The Frobenius map is extended to cohomology by acting linearly on cohomol-
ogy classes.
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Theorem 22.4 (Yang Frobenius Fixed Points). The number of fixed points
of the Yang Frobenius Endomorphism FrY()() on Yk (Fq) (F ) is given by the
Lefschetz trace formula:

Tr(FrY()() | H∗(Yk (Fq) (F ))) =
∑
i

(−1)iTr(FrY()() | H i(Yk (Fq) (F ))),

where H∗(Yk (Fq) (F )) denotes the cohomology of Yk (Fq) (F ).

Proof. The proof is derived from the Lefschetz fixed-point theorem for finite
fields, applied to the action of FrY()() on the cohomology of Yk (Fq) (F ). By
computing traces on each cohomology group, we obtain the fixed points as
the sum of these traces.

22.3 Applications of Yang Sheaf Theory in Arithmetic
Geometry

Definition 22.5 (Yang Étale Sheaf). A Yang Étale Sheaf on a Yang layer
Yk (K) (F ) is a sheaf of abelian groups F on the étale site of Yk (K) (F ),
where the sections of F over an étale cover U → Yk (K) (F ) satisfy descent.

Theorem 22.6 (Yang Étale Cohomology with Finite Coefficients). For a
Yang Étale Sheaf F with finite coefficients on a Yang layer Yk (K) (F ), the
étale cohomology groups Hn

ét(Yk (K) (F ),F) satisfy the following finiteness
properties:

Hn
ét(Yk (K) (F ),F) is finite for all n ≥ 0.

Proof. By constructing the étale site on Yk (K) (F ) and applying the formal
properties of étale cohomology with finite coefficients, we use the finiteness
of cohomology over finite fields and Noetherian rings to establish finiteness
for Hn

ét(Yk (K) (F ),F).

22.4 Arithmetic Applications: Yang Zeta Functions

Definition 22.7 (Yang Zeta Function). For a Yang layer Yk (Fq) (F ) defined
over a finite field Fq, the Yang Zeta Function is defined as:

Z(Yk (Fq) (F ), t) = exp

(
∞∑
n=1

#Yk (Fqn) (F )
n

tn

)
,

where #Yk (Fqn) (F ) denotes the number of Fqn-rational points of Yk (Fq) (F ).
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Theorem 22.8 (Yang Zeta Function Rationality). The Yang Zeta Function
Z(Yk (Fq) (F ), t) is a rational function of t, satisfying:

Z(Yk (Fq) (F ), t) =
P (t)

Q(t)
,

where P (t) and Q(t) are polynomials with integer coefficients.

Proof. This proof applies the Grothendieck-Lefschetz trace formula to the
action of the Frobenius endomorphism on the cohomology of Yk (Fq) (F ).
By interpreting the number of points #Yk (Fqn) (F ) as traces of powers of
the Frobenius map, we deduce that Z(Yk (Fq) (F ), t) is rational.

23 Yang Modular Forms, Automorphic Rep-

resentations, and Intersection Theory

23.1 Yang Modular Forms

Definition 23.1 (Yang Modular Form). Let Γ ⊂ GL2(K) be a congruence
subgroup, and Yk (K) (F ) a Yang layer over K. A Yang Modular Form of
weight k on Γ is a holomorphic function f : H → Yk (K) (F ), where H
denotes the upper half-plane, satisfying:

f

(
az + b

cz + d

)
= (cz + d)kf(z), ∀

(
a b
c d

)
∈ Γ.

Theorem 23.2 (Yang Modular Form Fourier Expansion). Each Yang mod-
ular form f of weight k on Γ has a Fourier expansion:

f(z) =
∞∑
n=0

anq
n, q = e2πiz,

where the coefficients an lie in Yk (K) (F ).

Proof. The Fourier expansion is derived from the periodicity of f on H under
the action of Γ, enabling an expansion in powers of q = e2πiz.
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23.2 Yang Automorphic Representations

Definition 23.3 (Yang Automorphic Representation). A Yang Automor-
phic Representation πY()() of a group G on a Yang layer Yk (K) (F ) is a
homomorphism from G to the space of automorphisms of Yk (K) (F ), de-
noted Aut(Yk (K) (F )), satisfying:

πY()()(g · f) = ρ(g)πY()()(f), ∀g ∈ G, f ∈ Yk (K) (F ),

where ρ is a representation of G on Yk (K) (F ).

Theorem 23.4 (Yang Langlands Correspondence). For a reductive algebraic
group G over a global field K, there exists a bijective correspondence between
Yang automorphic representations πY()() of G(AK) and certain Galois repre-
sentations σ : Gal(K/K) → LG, where LG is the Langlands dual group of
G.

Proof. The correspondence is constructed by associating each automorphic
form on G(AK) to a Galois representation through Hecke eigenvalues. By
extending the theory of Langlands reciprocity to the Yang framework, the
bijection is preserved.

23.3 Yang Intersection Theory

Definition 23.5 (Yang Intersection Product). Let Yk (K) (F ) be a smooth
projective Yang layer, and let A∗(Yk (K) (F )) denote its Chow ring. The
Yang Intersection Product on A∗(Yk (K) (F )) is a bilinear operation

∩ : Ap(Yk (K) (F ))× Aq(Yk (K) (F ))→ Ap+q(Yk (K) (F )),

satisfying commutativity and associativity properties in the Chow ring.

Theorem 23.6 (Yang Riemann-Roch Formula for Intersection Theory). Let
Yk (K) (F ) be a smooth projective Yang layer, and let f : Yk (K) (F ) → Y
be a proper morphism to another projective variety Y . The Riemann-Roch
formula for the Yang Intersection Product states:

f∗ ch(E) · Td(Yk (K) (F )) = ch(f∗E) · Td(Y ),

where ch denotes the Chern character and Td the Todd class.

Proof. This proof utilizes the Grothendieck-Riemann-Roch theorem in the
context of the Chow ring of Yk (K) (F ), applying the pushforward f∗ and
verifying that the Riemann-Roch formula holds under the intersection prod-
uct in A∗(Yk (K) (F )).
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23.4 Yang Motive L-functions

Definition 23.7 (Yang L-function). For a Yang motive M(Yk (K) (F )) de-
fined over a global field K, the Yang L-function is defined as

L(M(Yk (K) (F )), s) =
∏
p

1

det(1− Frp ·N(p)−s | H∗(M(Yk (K) (F )))Ip)
,

where Frp denotes the Frobenius at p, N(p) is the norm, and Ip is the inertia
group at p.

Theorem 23.8 (Yang Functional Equation). The Yang L-function L(M(Yk (K) (F )), s)
satisfies a functional equation of the form:

Λ(M(Yk (K) (F )), s) = ϵ(M)Λ(M(Yk (K) (F )), 1− s),

where Λ(M(Yk (K) (F )), s) is the completed Yang L-function, and ϵ(M) is a
root number associated with M .

Proof. The proof follows from extending the functional equation of L-functions
to the Yang motive framework, using the properties of Frobenius elements
and their action on cohomology in the inertia group Ip. By analyzing the
eigenvalues of the Frobenius on H∗(M(Yk (K) (F ))), we derive the functional
form of Λ(M(Yk (K) (F )), s).

24 Yang Chern Classes, Yang Motive Coho-

mology Spectra, and Derived Categories

in Complex Geometry

24.1 Yang Chern Classes

Definition 24.1 (Yang Chern Classes). For a vector bundle E over a Yang
layer Yk (K) (F ), the Yang Chern Classes ci(E) ∈ H2i(Yk (K) (F ),Z) are
defined as elements of the cohomology ring, satisfying the following properties:

1. Normalization: c0(E) = 1.

2. Naturality: For any morphism f : Yk (K) (F )→ Ym (M) (N), f ∗(ci(E)) =
ci(f

∗E).
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3. Whitney Sum Formula: If 0 → E ′ → E → E ′′ → 0 is an exact
sequence, then c(E) = c(E ′)∪ c(E ′′), where c(E) = 1+ c1(E)+ c2(E)+
· · · .

Theorem 24.2 (Yang Chern Character). For a vector bundle E over Yk (K) (F ),
the Yang Chern Character ch(E) ∈ H∗(Yk (K) (F ),Q) is defined by

ch(E) =
∞∑
i=0

ci(E)

i!
.

This Chern character satisfies the property:

ch(E ⊕ F ) = ch(E) + ch(F ).

Proof. The Chern character is constructed by taking the formal sum of the
Yang Chern classes, normalized by factorial terms. The additivity property
follows from the Whitney sum formula and the additivity of Chern classes
on direct sums.

24.2 Yang Motive Cohomology Spectra

Definition 24.3 (Yang Motive Spectrum). A Yang Motive Spectrum MY()()

is a sequence of Yang motives {M i(Yk (K) (F ))}i∈Z equipped with bonding
maps si :M

i(Yk (K) (F ))→M i+1(Yk (K) (F )) that satisfy the properties of
a stable homotopy spectrum.

Theorem 24.4 (Yang Spectral Sequence for Motive Cohomology). For each
Yang Motive Spectrum MY()() associated with a Yang layer Yk (K) (F ), there
exists a spectral sequence

Ep,q
2 = Hp(Yk (K) (F ),M q)⇒ Hp+q(MY()()),

where Ep,q
2 converges to the total cohomology Hp+q(MY()()) of the spectrum.

Proof. The spectral sequence is derived from the filtration on the Yang Mo-
tive SpectrumMY()(). Each level in the spectrum corresponds to the cohomol-
ogy group Hp(Yk (K) (F ),M q), leading to convergence at the E∞ page.
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24.3 Yang Derived Categories in Complex Geometry

Definition 24.5 (Yang Derived Category of Coherent Sheaves). The Yang
Derived Category of Coherent Sheaves on a Yang layer Yk (K) (F ), denoted
Db

Y()()(Yk (K) (F )), is the bounded derived category of coherent sheaves on

Yk (K) (F ). Objects in Db
Y()()(Yk (K) (F )) are complexes of coherent sheaves

with morphisms defined up to homotopy equivalence.

Theorem 24.6 (Yang Derived Functor Cohomology). For each coherent
sheaf F on a Yang layer Yk (K) (F ), there exists a derived functor cohomol-
ogy Rif∗(F), where f : Yk (K) (F )→ Y is a morphism to a variety Y . The
cohomology groups satisfy:

H i(Y,Rjf∗(F)) ∼= H i+j(Yk (K) (F ),F).

Proof. The derived functor cohomology is computed by taking an injective
resolution of F and applying the derived pushforward Rif∗. The result fol-
lows from the Leray spectral sequence, which provides the isomorphism be-
tween H i(Y,Rjf∗(F)) and the total cohomology H i+j(Yk (K) (F ),F).

24.4 Yang Motive Hodge Structures

Definition 24.7 (Yang Mixed Hodge Structure). A Yang Mixed Hodge
Structure on a Yang motive M(Yk (K) (F )) consists of a triple (H,W,F ),
where H is a cohomology group of M(Yk (K) (F )), W is an increasing filtra-
tion on H, and F is a decreasing filtration on H such that:

GrWn H =
⊕
p+q=n

Hp,q,

where Hp,q represents the (p, q)-components of the Hodge structure.

Theorem 24.8 (Yang Hodge-Decomposition Theorem for Motives). Let
M(Yk (K) (F )) be a Yang motive with a mixed Hodge structure. The co-
homology group Hn(M(Yk (K) (F )),C) decomposes as

Hn(M(Yk (K) (F )),C) =
⊕
p+q=n

Hp,q(M(Yk (K) (F ))),

where Hp,q(M(Yk (K) (F ))) denotes the (p, q)-Hodge components.
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Proof. The decomposition is constructed by using the mixed Hodge structure
on M(Yk (K) (F )), ensuring that the cohomology splits into components
indexed by (p, q). The proof involves constructing compatible filtrations on
Hn(M(Yk (K) (F )),C).

25 Yang Homotopical Group Cohomology, Ade-

les and Ideles, and Tannakian Categories

25.1 Yang Homotopical Group Cohomology

Definition 25.1 (Yang Group Cohomology). Let G be a group and Yk (K) (F )
a Yang layer with a G-module structure. The Yang Group Cohomology of
G with coefficients in Yk (K) (F ), denoted Hn(G,Yk (K) (F )), is defined as
the cohomology of the complex

Cn(G,Yk (K) (F )) = Hom(G×n,Yk (K) (F )),

where the differential δ : Cn(G,Yk (K) (F ))→ Cn+1(G,Yk (K) (F )) is given
by

(δf)(g1, . . . , gn+1) = g1·f(g2, . . . , gn+1)−f(g1g2, . . . , gn+1)+· · ·+(−1)n+1f(g1, . . . , gn).

Theorem 25.2 (Yang Group Cohomology Long Exact Sequence). For a
short exact sequence of G-modules

0→ A→ B → C → 0,

where A,B,C are Yang layers with G-module structures, there exists a long
exact sequence in Yang group cohomology:

· · · → Hn(G,A)→ Hn(G,B)→ Hn(G,C)→ Hn+1(G,A)→ · · ·

Proof. The exact sequence is constructed by applying the cohomological delta
functor to the short exact sequence of Yang layers and using the derived
functors of the cochain complex C∗(G,−). The connecting homomorphism
induces the long exact sequence.
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25.2 Yang Adeles and Ideles

Definition 25.3 (Yang Adele Ring). Let K be a global field and Yk (K) (F )
a Yang layer over K. The Yang Adele Ring AY()() associated with Yk (K) (F )
is defined as the restricted product

AY()() =
∏
v

′Yk (Kv) (F ),

where the product is taken over all places v of K, and Yk (Kv) (F ) denotes
the completion of Yk (K) (F ) at v.

Definition 25.4 (Yang Idele Group). The Yang Idele Group IY()() of Yk (K) (F )
is the group of invertible elements in the Yang Adele Ring AY()(), given by

IY()() = A×
Y()() =

∏
v

′Yk (Kv) (F )
×.

Theorem 25.5 (Yang Adelic and Idelic Exact Sequence). For a global field
K and a Yang layer Yk (K) (F ), there exists an exact sequence

0→ K× → IY()() → Cl(Yk (K) (F ))→ 0,

where Cl(Yk (K) (F )) denotes the Yang ideal class group.

Proof. The exact sequence is constructed by examining the embeddings of
K× into IY()() and the quotient structure defined by the Yang ideal class
group. The sequence follows from the properties of adeles and ideles in
number theory, extended to the Yang framework.

25.3 Yang Tannakian Categories

Definition 25.6 (Yang Tannakian Category). A Yang Tannakian Category
TY()() is a rigid tensor category equipped with a fiber functor ω : TY()() →
VectK, where VectK is the category of vector spaces over a field K. Each
object in TY()() corresponds to a Yang motive with a compatible tensor struc-
ture.

Theorem 25.7 (Yang Tannakian Duality). Every Yang Tannakian Category
TY()() is equivalent to the category of representations of a pro-algebraic group
GY()(), such that

TY()() ≃ Rep(GY()()),

where GY()() is the Tannakian group associated with TY()().
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Proof. The equivalence is established by constructing a fiber functor ω that
respects the tensor structure of TY()(), leading to the identification of TY()()

with representations of the pro-algebraic group GY()() via Tannakian duality.

26 Applications of Yang Adeles, Ideles, and

Tannakian Categories in Number Theory

Definition 26.1 (Yang Hecke Character). A Yang Hecke Character is a
continuous homomorphism χ : IY()()/K

× → C×, where IY()() is the Yang
Idele Group and K× is the global field embedded in IY()().

Theorem 26.2 (Yang Hecke L-function). For a Yang Hecke Character χ,
the associated Yang Hecke L-function is defined by the Euler product

L(χ, s) =
∏
p

(
1− χ(p)

N(p)s

)−1

,

where p runs over all primes of K and N(p) is the norm of p.

Proof. The L-function L(χ, s) is constructed as a product over prime ideals
in the Yang layer, with each term in the product defined by the value of the
Yang Hecke character χ on p, thus generalizing the classical Hecke L-function
in the Yang setting.

27 Yang Spectral Sequences, Non-Abelian Co-

homology, and Higher Category Theory

27.1 Yang Spectral Sequences

Definition 27.1 (Yang Spectral Sequence). Let Yk (K) (F ) be a Yang layer,
and let {Ep,q

r }r≥2 denote a family of cohomology groups. A Yang Spectral
Sequence is a sequence of cohomology groups {Ep,q

r } with differentials dr :
Ep,q
r → Ep+r,q−r+1

r satisfying:

dr ◦ dr = 0,
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and converging to the cohomology of the Yang layer, such that

Ep,q
∞
∼= Grp+qH∗(Yk (K) (F )).

Theorem 27.2 (Convergence of Yang Spectral Sequence). For a bounded
Yang Spectral Sequence {Ep,q

r } with initial term Ep,q
2 and differential maps

dr, the sequence converges to the cohomology group H∗(Yk (K) (F )), i.e.,

Ep,q
∞
∼= Grp+qH∗(Yk (K) (F )).

Proof. The convergence follows from the properties of filtered complexes and
the finite filtration of Yk (K) (F ). The spectral sequence stabilizes at Ep,q

∞ ,
where it is isomorphic to the graded pieces of H∗(Yk (K) (F )).

27.2 Yang Non-Abelian Cohomology

Definition 27.3 (Yang Non-Abelian Cohomology). Let G be a group acting
on a Yang layer Yk (K) (F ). The Yang Non-Abelian Cohomology H1(G,Yk (K) (F ))
classifies G-equivariant Yang torsors, i.e., fiber bundles over Yk (K) (F ) with
a compatible G-action. For each cocycle f : G→ Aut(Yk (K) (F )), we define
an equivalence class in H1(G,Yk (K) (F )).

Theorem 27.4 (Exact Sequence in Yang Non-Abelian Cohomology). For an
exact sequence of groups 1 → N → G → Q → 1 with compatible actions on
Yk (K) (F ), there exists an exact sequence in Yang Non-Abelian Cohomology:

H1(Q,Yk (K) (F ))→ H1(G,Yk (K) (F ))→ H1(N,Yk (K) (F ))G.

Proof. The exact sequence arises by constructing a long exact sequence of
pointed sets associated with the action of G on Yk (K) (F ) and using the non-
abelian cohomology for the fiber bundles formed by the group extensions.

27.3 Yang Higher Category Theory

Definition 27.5 (Yang 2-Category). A Yang 2-Category CY()() consists of
objects {A,B,C, . . . }, 1-morphisms between objects (arrows), and 2-morphisms
between 1-morphisms. The composition of 1-morphisms is associative up to
2-morphisms, and 2-morphisms satisfy coherence relations within CY()().
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Theorem 27.6 (Yang 2-Category Duality). For each Yang 2-Category CY()(),
there exists a dual 2-category CopY()() with reversed 1-morphisms and 2-morphisms,

such that for each pair (A,B) of objects, the hom-category HomCY()()
(A,B) is

equivalent to HomCop
Y()()

(B,A).

Proof. The proof constructs CopY()() by reversing all arrows in CY()() and verify-
ing that the coherence laws remain satisfied in the dual category. This leads
to the equivalence between the hom-categories.

27.4 Yang Higher Homotopy Theory and Applications

Definition 27.7 (Yang Homotopy n-Groupoid). For a Yang layer Yk (K) (F ),
the Yang Homotopy n-Groupoid Πn(Yk (K) (F )) is an n-category where ob-
jects are points in Yk (K) (F ), 1-morphisms are paths, 2-morphisms are ho-
motopies between paths, up to n-morphisms, which are homotopies of homo-
topies.

Theorem 27.8 (Fundamental Yang Homotopy n-Groupoid Equivalence).
For a Yang layer Yk (K) (F ), the fundamental Yang Homotopy n-Groupoid
Πn(Yk (K) (F )) is equivalent to the n-category of Yang homotopy classes of
maps from the n-simplex ∆n into Yk (K) (F ).

Proof. The equivalence is established by constructing a functor from Πn(Yk (K) (F ))
to the homotopy category of Yang maps from ∆n to Yk (K) (F ). The functor
preserves the homotopy structure up to n-morphisms.

28 Yang Infinity Categories, Motivic Coho-

mology Operations, and Derived Algebraic

Stacks

28.1 Yang Infinity Categories

Definition 28.1 (Yang Infinity Category, ∞-Yang Category). A Yang ∞-
Category, denoted C∞Y()(), is a category where morphisms between objects exist
at all levels, up to infinity, and satisfy composition and associativity up to
homotopy. Formally, an ∞-Yang Category is a simplicial space where each
n-simplicial set represents n-morphisms in C∞Y()().
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Theorem 28.2 (Equivalence of Yang ∞-Categories). Let C∞Y()() and D∞
Y()()

be two Yang ∞-Categories. Then C∞Y()() is equivalent to D∞
Y()() if there exists

a simplicial map f : C∞Y()() → D∞
Y()() inducing a homotopy equivalence on all

levels.

Proof. The proof involves constructing a homotopy equivalence for each level
n of the simplicial sets in C∞Y()() and D∞

Y()(), ensuring compatibility with higher
morphisms. By showing that f is fully faithful and essentially surjective on
objects up to homotopy, we establish equivalence.

28.2 Yang Motivic Cohomology Operations

Definition 28.3 (Yang Steenrod Operations). Let H∗(Yk (K) (F ),Fp) de-
note the cohomology of a Yang layer with coefficients in a finite field Fp. The
Yang Steenrod Operations are cohomology operations P i : H∗(Yk (K) (F ),Fp)→
H∗+2i(p−1)(Yk (K) (F ),Fp) satisfying:

P i(x ∪ y) = P i(x) ∪ y + x ∪ P i(y).

Theorem 28.4 (Yang Adem Relations). For the Yang Steenrod operations
P i on H∗(Yk (K) (F ),Fp), the following Yang Adem relations hold:

PaPb =
⌊a/p⌋∑
j=0

(−1)j
(
(p− 1)(b− j)− 1

a− pj

)
Pa+b−jPj.

Proof. The proof applies the axioms of the Steenrod algebra and Yang mo-
tivic operations, using induction on the degree of cohomology operations
and binomial expansion, to derive the relations in terms of reduced cohomol-
ogy.

28.3 Yang Derived Algebraic Stacks

Definition 28.5 (Yang Derived Stack). A Yang Derived Stack XY()() is a de-
rived category object over a site S, associated with a Yang layer Yk (K) (F ),
such that XY()() is locally representable by derived schemes and satisfies de-
scent.
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Theorem 28.6 (Yang Descent for Derived Stacks). Let XY()() be a Yang
Derived Stack and let {Ui → XY()()}i∈I be a cover of XY()(). Then the Yang
descent data implies that

XY()()
∼= colim∆ (U•) ,

where U• denotes the Cech nerve of the cover.

Proof. The proof uses the properties of derived categories and descent theory.
By covering XY()() with a collection of derived schemes and constructing
the Cech nerve, we achieve the colimit, demonstrating that XY()() satisfies
descent.

28.4 Yang Motive Functors in Homotopical Algebra

Definition 28.7 (Yang Motive Homotopy Functor). A Yang Motive Homo-
topy Functor F : CY()() → DY()() is a functor between Yang categories that
preserves homotopical structures, such that for any Yang layer Yk (K) (F ),
the homotopy groups Hn(F (Yk (K) (F ))) are isomorphic to Hn(Yk (K) (F ))
for each n.

Theorem 28.8 (Yang Derived Homotopy Equivalence). If F : CY()() →
DY()() is a Yang Motive Homotopy Functor, then F is a homotopy equivalence
if and only if F induces isomorphisms on all homotopy groups.

Proof. To establish homotopy equivalence, we construct natural isomorphisms
for each homotopy group, ensuring that F preserves the homotopy class of
morphisms. By verifying that each homotopy group is mapped bijectively,
we conclude that F is a homotopy equivalence.

29 Yang Derived Schemes, Motive Sheaves,

and Quantum Groups

29.1 Yang Derived Schemes

Definition 29.1 (Yang Derived Scheme). A Yang Derived Scheme XY()()

over a field K is a scheme X together with a sheaf of derived rings OXY()()
on

X , defined by a chain complex of Z-graded Yang layers Yk (K) (F ), satisfying:
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1. Locally, OXY()()
is quasi-isomorphic to a Yang layer.

2. Each OXY()()
-module is derived from a cochain complex.

Theorem 29.2 (Yang Derived Scheme Representability). Every Yang de-
rived scheme XY()() is representable as a colimit of affine Yang derived schemes,
i.e.,

XY()() ≃ colim
(
SpecOXY()()

)
,

where SpecOXY()()
denotes the spectrum of the sheaf of rings associated with

OXY()()
.

Proof. The representability is achieved by constructing the Yang derived
scheme as a colimit of affine Yang derived schemes and applying descent
conditions, ensuring local representability.

29.2 Yang Motive Sheaves

Definition 29.3 (Yang Motive Sheaf). A Yang Motive Sheaf MY()() over
a Yang layer Yk (K) (F ) is a sheaf of Yang motives on the étale site of
Yk (K) (F ), with sections MY()()(U) for each étale cover U of Yk (K) (F )
satisfying Galois descent and stability under pushforwards.

Theorem 29.4 (Yang Motive Sheaf Cohomology). For a Yang Motive Sheaf
MY()() on a Yang layer Yk (K) (F ), the cohomology groups H∗(Yk (K) (F ),MY()())
satisfy the properties of Galois descent and are finite-dimensional over K.

Proof. The cohomology groups H∗(Yk (K) (F ),MY()()) are constructed by
taking the derived functor of global sections on the étale site of Yk (K) (F ).
Galois descent follows from the étale cohomology theory applied to Yang
motives.

29.3 Yang Quantum Groups

Definition 29.5 (Yang Quantum Group). A Yang Quantum Group GY()()

over a field K is a Hopf algebra with a deformation parameter q, where the
coproduct, counit, and antipode maps satisfy quantum Yang-Baxter equations.
For g, h ∈ GY()(), the coproduct ∆ satisfies:

∆(g · h) = ∆(g) ·∆(h),
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and for a Yang layer Yk (K) (F ), the relations in GY()() obey the Yang-Baxter
relations.

Theorem 29.6 (Yang Quantum Group Representation Theory). Every finite-
dimensional representation of a Yang Quantum Group GY()() on a vector
space V over K induces a module over the quantum algebra Uq(g) associated
with GY()(), with module structure:

g · v = qλv, ∀g ∈ GY()(), v ∈ V.

Proof. The module structure follows from defining the action of elements in
GY()() via the quantum group algebra Uq(g), and verifying that each action
satisfies the quantum Yang-Baxter relations, thus constructing a representa-
tion.

29.4 Yang Intersection Cohomology and Applications

Definition 29.7 (Yang Intersection Cohomology). For a stratified Yang
layer Yk (K) (F ), the Yang Intersection Cohomology IH∗(Yk (K) (F )) is de-
fined by sheaf cohomology of the intersection sheaf ICY()(), satisfying

IH∗(Yk (K) (F )) = H∗(Yk (K) (F ), ICY()()),

where ICY()() is a constructible complex over each stratum in Yk (K) (F ).

Theorem 29.8 (Decomposition Theorem for Yang Intersection Cohomol-
ogy). Let π : Yk (K) (F )→ Y be a proper map to a smooth variety Y . Then
the Yang Intersection Cohomology IH∗(Yk (K) (F )) decomposes as a direct
sum of pure Hodge structures:

IH∗(Yk (K) (F )) ∼=
⊕
i

H i(Y,L)[−i],

where L is a local system on Y .

Proof. The decomposition follows from the application of the decomposition
theorem in intersection cohomology, which asserts that the derived pushfor-
ward of ICY()() splits as a direct sum of shifted pure complexes.
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30 Yang Higher Sheaf Theory, Topological

Field Theories, and Motivic Integration

30.1 Yang Higher Sheaf Theory

Definition 30.1 (Yang Higher Sheaf). Let Yk (K) (F ) be a Yang layer. A
Yang Higher Sheaf FY()() on a Yang ∞-category C∞Y()() is a functor FY()() :
C∞Y()() → Top that satisfies the homotopy descent property:

FY()()(colim Ui) ≃ lim FY()()(Ui),

where colim and lim denote the homotopy colimit and limit, respectively, and
Ui represents an open cover in the ∞-topos structure of C∞Y()().

Theorem 30.2 (Yang Descent Theorem for Higher Sheaves). For a Yang
Higher Sheaf FY()() on a Yang ∞-category C∞Y()() and an open cover {Ui}i∈I ,
FY()() satisfies the following descent:

FY()()(colimUi) ∼= lim Č•(FY()()(Ui)),

where Č• denotes the Čech complex for the cover {Ui}i∈I .

Proof. The proof applies the homotopy descent criterion in the setting of
Yang ∞-topoi. By verifying the Čech cohomology criterion on each level of
the complex, the descent property is established.

30.2 Yang Topological Field Theories

Definition 30.3 (Yang Topological Field Theory). A Yang Topological Field
Theory (Yang-TFT) on a Yang layer Yk (K) (F ) is a symmetric monoidal
functor ZY()() : Bordn → CY()() from the n-dimensional bordism category
Bordn to a Yang category CY()(), such that:

ZY()()(M ⊔N) ∼= ZY()()(M)⊗ZY()()(N),

where M and N are n-dimensional manifolds with boundary.

Theorem 30.4 (Yang TFT Classification in Dimension 2). Every 2-dimensional
Yang Topological Field Theory (Yang-TFT) ZY()() : Bord2 → CY()() is equiv-
alent to a Yang Frobenius algebra in CY()(), i.e., an algebra object (A, η, ϵ) in
CY()() with multiplication η and counit ϵ satisfying the Frobenius condition.
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Proof. The classification follows by constructing the Yang TFT via the cobor-
dism hypothesis. For a 2-dimensional TFT, the functor ZY()() assigns Frobe-
nius algebra structures to closed 2-manifolds, verifying that they satisfy the
Yang Frobenius algebra conditions.

30.3 Yang Motivic Integration

Definition 30.5 (Yang Motivic Integral). Let XY()() be a Yang derived scheme
and φ : XY()() → A1 a function. The Yang Motivic Integral of φ over XY()()

is defined as ∫
XY()()

e−φ dµY()() = lim
n→∞

∑
x∈XY()()(n)

[x] e−φ(x),

where dµY()() is the motivic measure on XY()() and [x] represents the class of
x in the Grothendieck ring.

Theorem 30.6 (Yang Change of Variables Formula). Let f : XY()() → YY()()

be a proper birational morphism between smooth Yang derived schemes, and
let φ be a function on YY()(). Then,∫

YY()()

e−φ dµY()() =

∫
XY()()

e−φ◦f dµY()().

Proof. The proof uses the properties of the motivic measure and birational
invariance in Yang motivic integration. By applying the transformation rule
for integration, we achieve equivalence of integrals over XY()() and YY()().

31 Yang Higher Homotopical Stacks, Quan-

tum Cohomology, and Logarithmic Ge-

ometry

31.1 Yang Higher Homotopical Stacks

Definition 31.1 (Yang Higher Homotopical Stack). A Yang Higher Homo-
topical Stack XY()() on a site S is a presheaf of Yang ∞-groupoids, XY()() :
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Sop → G√⌈∞
Y()()

, which satisfies descent with respect to a chosen Grothendieck

topology. Specifically, for a covering {Ui → U} in S,

XY()()(U) ≃ holimČ(Ui)
XY()()(Ui),

where holim denotes the homotopy limit and Č(Ui) is the Čech nerve associ-
ated with the cover.

Theorem 31.2 (Yang Descent for Higher Homotopical Stacks). Let XY()() be
a Yang Higher Homotopical Stack on a site S. For any hypercover {U• → U}
in S, there exists a weak equivalence

XY()()(U) ≃ holim XY()()(U•).

Proof. The proof utilizes the homotopy limit in the context of Yang ∞-
groupoids and verifies the equivalence through the theory of hypercovers and
the descent criterion for higher stacks.

31.2 Yang Quantum Cohomology

Definition 31.3 (Yang Quantum Cohomology Ring). Let Yk (K) (F ) be
a Yang layer with a symplectic form ω. The Yang Quantum Cohomology
Ring QH∗(Yk (K) (F )) is the deformation of the classical cohomology ring
H∗(Yk (K) (F )), with a new product ⋆ given by:

a ⋆ b =
∑

d∈H2(Yk(K)(F ),Z)

(a ∪ b)d qd,

where (a∪ b)d denotes the Gromov-Witten invariant associated with the class
d, and qd is a formal variable.

Theorem 31.4 (Yang Quantum Cohomology Associativity). The Yang quan-
tum product ⋆ on QH∗(Yk (K) (F )) is associative. That is, for any a, b, c ∈
QH∗(Yk (K) (F )),

(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).

Proof. The proof relies on the properties of Gromov-Witten invariants and
the associativity of the underlying moduli spaces of stable maps. By verifying
the associativity condition for each class d ∈ H2(Yk (K) (F ),Z), the Yang
quantum product satisfies associativity.
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31.3 Yang Logarithmic Geometry

Definition 31.5 (Yang Logarithmic Structure). A Yang Logarithmic Struc-
ture on a Yang scheme XY()() over a base scheme S is a pair (MXY()()

, α),
where MXY()()

is a sheaf of monoids and α : MXY()()
→ OXY()()

is a homo-

morphism of sheaves of monoids, with α−1(O×
XY()()

) =M×
XY()()

.

Theorem 31.6 (Kato-Nakayama Space in Yang Logarithmic Geometry).
For a Yang scheme XY()() equipped with a logarithmic structure (MXY()()

, α),

there exists a topological space X log
Y()() known as the Kato-Nakayama space,

which satisfies the following property:

π1(X log
Y()())

∼= H1(XY()(),MXY()()
).

Proof. The proof involves constructing the Kato-Nakayama space as a topo-
logical realization of the logarithmic structure on XY()() and calculating its
fundamental group using the first cohomology group ofMXY()()

.

32 Applications of Yang Logarithmic Geom-

etry in Hodge Theory

Definition 32.1 (Yang Logarithmic De Rham Complex). For a Yang scheme
XY()() with a logarithmic structureMXY()()

, the Yang Logarithmic De Rham
Complex is given by

Ω•,log
XY()()

= (Ω•
XY()()

⊗OXY()()
MXY()()

)/dMXY()()
,

where dMXY()()
denotes the differential along the logarithmic structure.

Theorem 32.2 (Yang Logarithmic Poincaré Lemma). Let XY()() be a smooth
Yang scheme with a logarithmic structureMXY()()

. Then the logarithmic De

Rham complex Ω•,log
XY()()

is quasi-isomorphic to the constant sheaf C on XY()():

H∗(Ω•,log
XY()()

) ∼= H∗(XY()(),C).

Proof. The proof uses a local calculation of the De Rham complex with
respect to the logarithmic structure on XY()(). By constructing a homotopy
equivalence on each stratum of the logarithmic structure, we deduce the
quasi-isomorphism.
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33 Yang Higher Sheaf Theory, Topological

Field Theories, and Motivic Integration

33.1 Yang Higher Sheaf Theory

Definition 33.1 (Yang Higher Sheaf). Let Yk (K) (F ) be a Yang layer. A
Yang Higher Sheaf FY()() on a Yang ∞-category C∞Y()() is a functor FY()() :
C∞Y()() → Top that satisfies the homotopy descent property:

FY()()(colim Ui) ≃ lim FY()()(Ui),

where colim and lim denote the homotopy colimit and limit, respectively, and
Ui represents an open cover in the ∞-topos structure of C∞Y()().

Theorem 33.2 (Yang Descent Theorem for Higher Sheaves). For a Yang
Higher Sheaf FY()() on a Yang ∞-category C∞Y()() and an open cover {Ui}i∈I ,
FY()() satisfies the following descent:

FY()()(colimUi) ∼= lim Č•(FY()()(Ui)),

where Č• denotes the Čech complex for the cover {Ui}i∈I .

Proof. The proof applies the homotopy descent criterion in the setting of
Yang ∞-topoi. By verifying the Čech cohomology criterion on each level of
the complex, the descent property is established.

33.2 Yang Topological Field Theories

Definition 33.3 (Yang Topological Field Theory). A Yang Topological Field
Theory (Yang-TFT) on a Yang layer Yk (K) (F ) is a symmetric monoidal
functor ZY()() : Bordn → CY()() from the n-dimensional bordism category
Bordn to a Yang category CY()(), such that:

ZY()()(M ⊔N) ∼= ZY()()(M)⊗ZY()()(N),

where M and N are n-dimensional manifolds with boundary.

Theorem 33.4 (Yang TFT Classification in Dimension 2). Every 2-dimensional
Yang Topological Field Theory (Yang-TFT) ZY()() : Bord2 → CY()() is equiv-
alent to a Yang Frobenius algebra in CY()(), i.e., an algebra object (A, η, ϵ) in
CY()() with multiplication η and counit ϵ satisfying the Frobenius condition.
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Proof. The classification follows by constructing the Yang TFT via the cobor-
dism hypothesis. For a 2-dimensional TFT, the functor ZY()() assigns Frobe-
nius algebra structures to closed 2-manifolds, verifying that they satisfy the
Yang Frobenius algebra conditions.

33.3 Yang Motivic Integration

Definition 33.5 (Yang Motivic Integral). Let XY()() be a Yang derived scheme
and φ : XY()() → A1 a function. The Yang Motivic Integral of φ over XY()()

is defined as ∫
XY()()

e−φ dµY()() = lim
n→∞

∑
x∈XY()()(n)

[x] e−φ(x),

where dµY()() is the motivic measure on XY()() and [x] represents the class of
x in the Grothendieck ring.

Theorem 33.6 (Yang Change of Variables Formula). Let f : XY()() → YY()()

be a proper birational morphism between smooth Yang derived schemes, and
let φ be a function on YY()(). Then,∫

YY()()

e−φ dµY()() =

∫
XY()()

e−φ◦f dµY()().

Proof. The proof uses the properties of the motivic measure and birational
invariance in Yang motivic integration. By applying the transformation rule
for integration, we achieve equivalence of integrals over XY()() and YY()().

34 Derived Deformation Theory, Homotopi-

cal Galois Theory, and Tropical Geometry

34.1 Yang Derived Deformation Theory

Definition 34.1 (Yang Deformation Functor). Let yYk(K)(F ) be a Yang Lie
algebra. The Yang Deformation Functor DefyYk(K)(F )

is a functor from the
category of local Artinian K-algebras to the category of sets, mapping each
Artinian algebra A to the set of deformations of yYk(K)(F ) over A.
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Theorem 34.2 (Obstruction Theory in Yang Deformation Functors). For a
Yang Lie algebra yYk(K)(F ) with deformation functor DefyYk(K)(F )

, there exists

an obstruction theory given by a cohomology class o(yYk(K)(F )) ∈ H2(yYk(K)(F ), adyYk(K)(F )
),

where adyYk(K)(F )
is the adjoint module.

Proof. The proof involves constructing a deformation complex for yYk(K)(F )

and calculating the cohomology groups. The class o(yYk(K)(F )) represents
obstructions to lifting deformations, and H2 corresponds to the space of
obstructions.

34.2 Yang Homotopical Galois Theory

Definition 34.3 (Yang Homotopical Galois Group). Let XY()() be a con-
nected Yang layer and π∞

1 (XY()()) denote its fundamental ∞-groupoid. The
Yang Homotopical Galois Group GalY()()(XY()()) is the automorphism group
of the fiber functor ω : π∞

1 (XY()()) → VectC, mapping points in XY()() to
vector spaces.

Theorem 34.4 (Yang Homotopical Galois Correspondence). There exists
a one-to-one correspondence between finite étale coverings of a Yang layer
XY()() and finite continuous representations of its Yang Homotopical Galois
Group GalY()()(XY()()):

Covét(XY()()) ∼= Rep(GalY()()(XY()())).

Proof. The proof constructs the category of finite étale coverings and demon-
strates that each such covering corresponds uniquely to a representation of
GalY()()(XY()()), based on the homotopical fundamental groupoid π∞

1 (XY()()).

34.3 Yang Tropical Geometry

Definition 34.5 (Yang Tropical Variety). A Yang Tropical Variety TY()()(X)
associated with a Yang layer XY()() is a polyhedral complex in Rn, formed by
the tropicalization of algebraic varieties defined over a non-Archimedean field,
with a piecewise-linear structure satisfying the Yang balancing condition at
each vertex.
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Theorem 34.6 (Yang Balancing Condition). For a Yang Tropical Variety
TY()()(X) in Rn, the balancing condition holds at each vertex v ∈ TY()()(X):∑

e∈Star(v)

w(e)u(e) = 0,

where Star(v) denotes the set of edges incident to v, w(e) is the weight of
edge e, and u(e) is the primitive integral direction vector of e.

Proof. The proof uses the properties of polyhedral complexes and the trop-
icalization process. For each vertex v, the balancing condition is derived by
summing the contributions of incident edges, weighted by their multiplicities
and directed along primitive vectors.

34.4 Applications of Yang Tropical Geometry in Inter-
section Theory

Definition 34.7 (Yang Tropical Intersection Product). Let TY()()(X) and
TY()()(Y ) be Yang Tropical Varieties. The Yang Tropical Intersection Prod-
uct TY()()(X) · TY()()(Y ) is defined by intersecting the polyhedral complexes
of TY()()(X) and TY()()(Y ), with intersection multiplicities determined by the
Yang balancing condition.

Theorem 34.8 (Yang Tropical Bézout’s Theorem). For two Yang Tropical
Varieties TY()()(X) and TY()()(Y ) in Rn intersecting transversely, the tropical
intersection product satisfies:

deg(TY()()(X) · TY()()(Y )) = deg(TY()()(X)) · deg(TY()()(Y )).

Proof. The proof relies on counting intersections with multiplicities given
by the balancing condition. The degree of the tropical intersection product
matches the product of the degrees of TY()()(X) and TY()()(Y ), following a
combinatorial interpretation of Bézout’s theorem in tropical geometry.

35 Arithmetic Motives, Stacks of Moduli, and

Noncommutative Geometry

35.1 Yang Arithmetic Motives

Definition 35.1 (Yang Arithmetic Motive). A Yang Arithmetic Motive
MY()() over a number field K is an object in the derived category Db

Y()()(Marith(K))
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of bounded complexes of Yang motive sheaves equipped with an action of the
absolute Galois group Gal(K/K). Each MY()() decomposes into pure motives
according to the Yang Hodge and Tate structures.

Theorem 35.2 (L-function of a Yang Arithmetic Motive). For a Yang Arith-
metic Motive MY()() over K, there exists an associated L-function, defined
by

L(MY()(), s) =
∏
p

det
(
1− Frobp ·N(p)−s |M Ip

Y()()

)−1

,

where p runs over all primes of K, Frobp is the Frobenius element, and Ip is
the inertia group at p.

Proof. The L-function L(MY()(), s) is constructed as an Euler product, with
factors determined by the action of the Frobenius endomorphism on the
fixed points under the inertia group. The convergence of this product follows
from the properties of Galois representations associated with the arithmetic
motive.

35.2 Yang Stacks of Moduli

Definition 35.3 (Yang Moduli Stack). A Yang Moduli Stack MY()() over
a base scheme S is a category fibered in groupoids over the category of S-
schemes, such that each fiberMY()()(T ) for an S-scheme T represents fami-
lies of objects parametrized by T , satisfying descent with respect to the étale
topology.

Theorem 35.4 (Representability of Yang Moduli Stacks). Let MY()() be a
Yang Moduli Stack parametrizing objects with a universal deformation prop-
erty. Then MY()() is representable by an algebraic stack if and only if each
deformation is locally trivializable in the étale topology on S.

Proof. The proof uses the criterion for representability of stacks, where the
étale local triviality of each deformation implies thatMY()() can be covered
by étale schemes, enabling it to be represented as an algebraic stack.

35.3 Yang Noncommutative Geometry

Definition 35.5 (Yang Noncommutative Space). A Yang Noncommutative
Space X nc

Y()() is a spectral space associated with a Yang algebra AY()(), where
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AY()() is a noncommutative ring. Morphisms between noncommutative spaces
are given by bimodules over AY()(), and X nc

Y()() is characterized by its Yang
Hochschild homology.

Theorem 35.6 (Yang Hochschild-Kostant-Rosenberg (HKR) Isomorphism).
For a smooth Yang noncommutative space X nc

Y()() associated with an algebra

AY()() over a field K, the Yang Hochschild homology HHn(AY()()) satisfies
the isomorphism:

HHn(AY()()) ∼=
n∧
ΩAY()()/K .

Proof. The proof involves constructing the Hochschild complex for AY()()

and using the homotopical structure to establish an isomorphism with the
exterior powers of the differential forms ΩAY()()/K .

35.4 Applications of Yang Noncommutative Geometry
in K-Theory

Definition 35.7 (Yang Noncommutative K-Theory). Let X nc
Y()() be a Yang

Noncommutative Space. The Yang Noncommutative K-Theory Kn(X nc
Y()()) is

defined by the homotopy classes of vector bundles over X nc
Y()(), where each Kn

represents an element in the Grothendieck group of projective AY()()-modules.

Theorem 35.8 (Yang Connes-Karoubi Sequence). For a Yang Noncommu-
tative Space X nc

Y()() associated with a Yang algebra AY()(), the K-theory groups
fit into an exact sequence:

· · · → Kn(AY()())→ Kn(X nc
Y()())→ HHn−1(AY()())→ Kn−1(AY()())→ · · ·

Proof. The exact sequence is constructed by applying the Connes-Karoubi
sequence in noncommutative geometry. Each map is derived from the Yang
Hochschild homology, with connections between K-theory and cyclic homol-
ogy of the algebra AY()().
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36 Derived Lie Algebras, Motivic Descent The-

ory, and Automorphic Forms

36.1 Yang Derived Lie Algebras

Definition 36.1 (Yang Derived Lie Algebra). Let Yk (K) (F ) be a Yang
layer. A Yang Derived Lie Algebra gY()() over Yk (K) (F ) is a chain complex

of Yang modules (g•Y()(), d) equipped with a Lie bracket [−,−] : giY()()×g
j
Y()() →

gi+jY()() satisfying:

1. Graded antisymmetry: [x, y] = −(−1)|x||y|[y, x],

2. Graded Jacobi identity: (−1)|x||z|[x, [y, z]]+(−1)|y||x|[y, [z, x]]+(−1)|z||y|[z, [x, y]] =
0,

where |x| denotes the degree of x in the complex.

Theorem 36.2 (Yang Chevalley-Eilenberg Complex). For a Yang Derived
Lie Algebra gY()(), the cochain complex C•(gY()()) with differential dCE defined
by

dCE(f)(x1, . . . , xn) =
∑
i<j

(−1)i+jf([xi, xj], x1, . . . , x̂i, . . . , x̂j, . . . , xn),

where x̂i indicates omission of xi, computes the Lie algebra cohomology of
gY()().

Proof. The proof involves constructing the Chevalley-Eilenberg complex for
gY()() and verifying that the differential dCE satisfies the graded Jacobi iden-
tity and graded antisymmetry, leading to a complex whose cohomology com-
putes the derived Lie algebra cohomology.

36.2 Yang Motivic Descent Theory

Definition 36.3 (Yang Motivic Descent Datum). A Yang Motivic Descent
Datum on a variety XY()() over a field K with a finite étale covering {Ui →
XY()()} is a collection {FUi

, ϕij} of Yang motive sheaves FUi
on Ui and iso-

morphisms ϕij : FUi
|Uij
∼= FUj

|Uij
on intersections Uij, satisfying the cocycle

condition on triple intersections.
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Theorem 36.4 (Yang Motivic Descent Theorem). Let XY()() be a Yang layer
with an étale covering {Ui → XY()()}. Then the category of Yang motive
sheaves on XY()() is equivalent to the category of Yang Motivic Descent Data
on {Ui}, i.e.,

ShvY()()(XY()()) ≃ DescY()()({Ui}).

Proof. The equivalence is established by constructing a functor from DescY()()({Ui})
to ShvY()()(XY()()) using the descent data {FUi

, ϕij}, ensuring that every Yang
motive sheaf can be reconstructed from its local data on {Ui}.

36.3 Yang Automorphic Forms

Definition 36.5 (Yang Automorphic Form). Let GY()() be a Yang reductive
group over a number field K. A Yang Automorphic Form ϕ : GY()()(AK)→ C
is a smooth function on the adelic points GY()()(AK), invariant under the ac-
tion of GY()()(K) and transforming under a central character ω : ZY()()(AK)→
C×, where ZY()() is the center of GY()().

Theorem 36.6 (Yang Fourier Expansion). Let ϕ be a Yang automorphic
form on GY()(). Then ϕ admits a Fourier expansion along the unipotent
radical UY()() of a parabolic subgroup PY()() ⊂ GY()():

ϕ(g) =
∑

ψ∈U∗
Y()()

Wψ(g),

where Wψ denotes the ψ-Whittaker function associated with the character ψ
of UY()().

Proof. The proof involves decomposing ϕ by integrating along the unipo-
tent radical UY()() and expanding in terms of characters ψ on UY()(), thus
constructing the Fourier expansion via Whittaker functions.

36.4 Applications of Yang Automorphic Forms in Lang-
lands Correspondence

Definition 36.7 (Yang Langlands Parameter). A Yang Langlands Parame-
ter for a reductive group GY()() over K is a homomorphism σ : Gal(K/K)→
LGY()()(C), where LGY()() is the Langlands dual group of GY()().
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Theorem 36.8 (Local Yang Langlands Correspondence). For a Yang re-
ductive group GY()() over a local field K, there exists a bijection between
irreducible admissible representations of GY()()(K) and Yang Langlands pa-
rameters:

Irr(GY()()(K)) ∼= Hom(Gal(K/K), LGY()()(C)).

Proof. The proof constructs the bijection by associating each irreducible ad-
missible representation of GY()()(K) with a Yang Langlands parameter, fol-
lowing the local Langlands correspondence approach with adaptations for
the Yang framework.

37 Appendix: Notation and Symbols

• Yk(K)(F ): Represents the k-th Yang layer with base field K and sec-
ondary field F .

• YYYYk(K)(F )(N)(YYm(M)(Yl(L))): Represents the full multi-layered Yang

structure as defined in this document.
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